# Difference between revisions of "Sandbox"

Line 32: | Line 32: | ||

</tr> | </tr> | ||

</table> | </table> | ||

+ | |||

+ | Difference = p (1) - p (2)<br> | ||

+ | Estimate for difference: -0.00280480<br> | ||

+ | 95% CI for difference: (-0.00546736, -0.000142249)<br> | ||

+ | Test for difference = 0 (vs not = 0): Z = -2.06 P-Value = 0.039<br> | ||

+ | |||

+ | Fisher's exact test: P-Value = 0.048<br> | ||

+ | |||

+ | “Efficacy” of 31.2% seems to be determined from<br> | ||

+ | (74 - 51)/ 74 = .310<br> | ||

+ | |||

+ | In the final column of the chart--“Strictly adheres to trial design”--appears the unreleased<br> “per protocol” version. According to<br> [http://blogs.sciencemag.org/scienceinsider/2009/10/unrevealed-anal.html Science Magazine]: | ||

+ | |||

+ | <center>The second analysis is called “per protocol” and adheres strictly to how the trial was designed by only including the study participants who got the full regimen of vaccine shots at the right time. Because it excludes study participants who didn't get the full vaccine regimen, it usually provides corroboration to the looser “intent to treat” findings.</center> | ||

+ | |||

+ | The article doesn’t say what the breakdown of the 86 infections is. Nevertheless, it indicates that the p-value of 16% puts a damper on enthusiasm for the vaccine. | ||

+ | |||

+ | <center>“The press conference was not a scholarly, rigorously honest presentation,” said one leading HIV/AIDS investigator, who like others asked that his name not be used. “It doesn’t meet the standards that have been set for other trials, and it doesn’t fully present the borderline results. It’s wrong.”</center> | ||

+ | |||

+ | Discussion | ||

+ | |||

+ | 1. “Strictly adheres to trial design” has an efficacy of 26.2% and 86 infections. Show that this leads approximately to 36 and 50 infections, respectively. | ||

+ | |||

+ | 2. The articles fail to tell us the number of participants in the “per protocol” situation. However, use the 36 and 50 cited above and show via a statistics package such as Minitab that the Fisher exact test comes up with about 16% for the p-value regardless of whether the sample sizes are the original ones or 4000 each, 5000 each, etc. | ||

+ | |||

+ | 3. The “researchers with the U.S. Army who helped run the study, strongly objected to the assertion that they gave the data a positive spin… The debate over the way the results were presented will have no immediate practical impact because even under the most optimistic assessment, the vaccine offered too little protection to be a serious candidate for widespread use.” If this is so, why was there so much positive publicity in September? |

## Revision as of 16:43, 14 October 2009

AIDS Vaccine

“Hardly ever believe what you read” is a maxim that will stand you in good stead. Googling “aids vaccine Thailand” will get 248,000 hits, most of which are misleading. In essence, the URLs say that for the first time an effective vaccine against AIDS has been manufactured. But that was last month. Reality has now set in.

The following chart found in the Wall Street Journal of October 9, 2009 paints a different picture. “New infections occurred in 51 of the 8,197 people who got the vaccine, compared with 74 of the 8,198 volunteers who got placebo shots.” Note that the “125” infections represent “51 + 74.”

The announcement on September 24, 2009 indicated that the p-value is 3.9%. A Minitab run shows that, in fact, the p-value is higher (i.e., worse) as indicated by the Fisher exact test. However, the .048 is still under the mystical .05:

**Test and CI for Two Proportions**

Sample |
X |
N |
Sample p |

1 |
51 |
8197 |
0.006222 |

2 |
74 |
8198 |
0.009027 |

Difference = p (1) - p (2)

Estimate for difference: -0.00280480

95% CI for difference: (-0.00546736, -0.000142249)

Test for difference = 0 (vs not = 0): Z = -2.06 P-Value = 0.039

Fisher's exact test: P-Value = 0.048

“Efficacy” of 31.2% seems to be determined from

(74 - 51)/ 74 = .310

In the final column of the chart--“Strictly adheres to trial design”--appears the unreleased

“per protocol” version. According to

Science Magazine:

The article doesn’t say what the breakdown of the 86 infections is. Nevertheless, it indicates that the p-value of 16% puts a damper on enthusiasm for the vaccine.

Discussion

1. “Strictly adheres to trial design” has an efficacy of 26.2% and 86 infections. Show that this leads approximately to 36 and 50 infections, respectively.

2. The articles fail to tell us the number of participants in the “per protocol” situation. However, use the 36 and 50 cited above and show via a statistics package such as Minitab that the Fisher exact test comes up with about 16% for the p-value regardless of whether the sample sizes are the original ones or 4000 each, 5000 each, etc.

3. The “researchers with the U.S. Army who helped run the study, strongly objected to the assertion that they gave the data a positive spin… The debate over the way the results were presented will have no immediate practical impact because even under the most optimistic assessment, the vaccine offered too little protection to be a serious candidate for widespread use.” If this is so, why was there so much positive publicity in September?